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The resolvent of supersymmetric Dirac Hamiltonian is studied in detail. Due to
supersymmetry the squared Dirac Hamiltonian becomes block-diagonal whose ele-
ments are in essence non-relativistic Schrödinger-type Hamiltonians. This enables us
to find a Feynman-type path-integral representation of the resulting Green’s func-
tions. In addition, we are also able to express the spectral properties of the super-
symmetric Dirac Hamiltonian in terms of those of the non-relativistic Schrödinger
Hamiltonians. The methods are explicitly applied to the free Dirac Hamiltonian, the
so-called Dirac oscillator and a generalization of it. The general approach is applica-
ble to systems with good and broken supersymmetry. Published by AIP Publishing.
https://doi.org/10.1063/1.5020545

I. INTRODUCTION

The idea of supersymmetry (SUSY) in non-relativistic quantum mechanics was first introduced
by Nicolai1 in 1976 for analyzing spin systems with a (0 + 1)-dimensional version of supersymmetric
quantum field theories. SUSY quantum mechanics became popular when Witten’s model was intro-
duced in 1981.2 Since then SUSY has become an important tool in studying properties of models
in quantum mechanics and statistical physics.3 Jackiw4 observed that the square of a 2-dimensional
Dirac particle subjected to an external magnetic field is directly related to the non-relativistic Pauli-
Hamiltonian of the same system. This observation triggered a more extended study of SUSY for
the Dirac Hamiltonians.5,6 Indeed, under certain conditions the Dirac Hamiltonian may be treated as
supercharge of some non-relativistic system in SUSY quantum mechanics.7–9 Such a SUSY structure
in turn proves to be very useful in studying the spectral properties of the Dirac Hamiltonian. For an
overview of relativistic quantum systems exhibiting SUSY, see Ref. 10.

In recent years, SUSY has also become a key concept in characterizing condensed matter systems
known as topological superconductors11 and also plays a crucial role in explaining quantum phenom-
ena in carbon-based nano-structures like nano-tubes and graphene. In the latter, the two-dimensional
Dirac Hamiltonian is used in characterizing its electronic transport properties.12 Here SUSY plays
a crucial role, for example, in understanding phenomena like the unconventional quantum Hall
effect.13

In the present paper, we study the resolvent of the Dirac Hamiltonian with the SUSY structure. We
show that Green’s functions resulting from the resolvent can be determined by means of path integrals
for the effective non-relativistic Lagrangians. The spectral properties of the Dirac Hamiltonian can
be derived in a simple way from those of the associated Schrödinger Hamiltonians. We also present
explicit applications to a few examples of the Dirac system.

In Sec. II, a stage is set for studying the SUSY properties of the Dirac Hamiltonian. In particular
the spectral properties of a supersymmetric Dirac Hamiltonian are shown to be given explicitly via
those of a corresponding non-relativistic N = 2 SUSY Hamiltonian. Section III deals with the path
integral representation of Green’s functions based on the effective Schrödinger Hamiltonian. The path
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integral used is formally equivalent to Feynman’s, in which the classical action is replaced by the
effective action corresponding to the effective Schrödinger Hamiltonian. Sections IV–VI are devoted
to solving examples which include the free Dirac electron, the Dirac oscillator, and a generalized
Dirac oscillator. Concluding remarks are given in Sec. VII.

II. SUPERSYMMETRIC DIRAC HAMILTONIANS

Supersymmetric (SUSY) quantum mechanics, as defined by Witten,2 are characterized by Hamil-
tonian HSUSY and a set of self-adjoint operators Qi (i = 1, 2, . . ., N) acting on some Hilbert space H
and satisfying (see, e.g., Ref. 3)

{Qi, Qj} =HSUSY δij, i, j = 1, 2, . . . , N , (2.1)

where {A, B}B AB + BA denotes the anti-commutator.
To study the SUSY-structure of the Dirac system, we restrict ourselves to the case of N = 2 which

involves only the three operators, Q1, Q2, and HSUSY acting on H. Here, instead of dealing with Q1

and Q2, we define complex supercharges

Q=
1
√

2
(Q1 + iQ2), Q† =

1
√

2
(Q1 − iQ2). (2.2)

These operators and the SUSY Hamiltonian close the superalgebra,1

{Q, Q†} =HSUSY , Q2 = 0=
(
Q†

)2
. (2.3)

In addition, we introduce the so-called Witten operator W which is a unitary (non-trivial) involu-
tion onH, commutes with the SUSY Hamiltonian, and anticommutes with the complex supercharges,
that is,

W† =W , W2 = 1, [W , HSUSY ]= 0, {W , Q} = 0= {W , Q†}. (2.4)

See Ref. 3. The projection operators defined by P± = (1 ± W )/2 decompose H into the eigenspaces
H± of the Witten operator with eigenvalues ±1. Namely,

H=H+ ⊕H−, (2.5)

H± =P±H= {|Ψ±
〉
∈H : W |Ψ±

〉
=±|Ψ±

〉
}. (2.6)

In the representation in which W is diagonal, i.e.,

W =

(
1 0

0 −1

)
, (2.7)

the complex supercharges take the form

Q=

(
0 D

0 0

)
, Q† =

(
0 0

D† 0

)
, (2.8)

where D is not self-adjoint in general. The SUSY Hamiltonian is usually given by

HSUSY = {Q, Q†} =

(
DD† 0

0 D†D

)
. (2.9)

However, more generally, within the framework of the SUSY algebra (2.4), we may choose the SUSY
Hamiltonian in the form

HSUSY = a{Q, Q†} + ε01= *
,

aDD† + ε0 0

0 aD†D + ε0

+
-
, (2.10)

where a and ε0 are arbitrary real constants with a > 0. In studying the Dirac problem, such a
modification is not imperative but useful. We treat the two diagonal elements H+

SUSY = aDD† + ε0

and H−SUSY = aD†D + ε0 as the SUSY partner Hamiltonians. As in the usual SUSY case, the partner
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Hamiltonians are isospectral. Let ε± and |Ψ±ε
〉

denote the eigenvalues and eigenstates of H±SUSY ,
that is,

H±SUSY |Ψ
±
ε

〉
= ε± |Ψ±ε

〉
. (2.11)

It is obvious that ε± ≥ ε0 and ε+ = ε� = ε for ε > ε0. The eigenstates |Ψ±ε
〉

for the same eigenvalue
ε > ε0 are related by the SUSY transformations

D† |Ψ+
ε

〉
=

√
(ε − ε0)/a|Ψ−ε

〉
, D|Ψ−ε

〉
=

√
(ε − ε0)/a|Ψ+

ε

〉
. (2.12)

For ε = ε0, there might exist eigenstates in H− or in H+ or in both. In that case, SUSY is said
to be unbroken. If ε0 does not belong to the spectrum of H−SUSY and H+

SUSY , SUSY is said to be
broken.

Now we consider the Dirac Hamiltonian

HD = cα ·
(
p −

e
c

A
)

+ βm0c2. (2.13)

Here α and β are the 4 × 4 Dirac matrices, c is the speed of light, m0 is the rest mass, and e is the
charge of an electron. Notice that the scalar potential is missing in (2.13). In the present paper, we
study only the case where the scalar potential is absent.

We employ the standard representation of the Dirac matrices

α =

(
0 σ

σ 0

)
, β =

(
1 0

0 −1

)
, (2.14)

where σ is the unit vector based on the Pauli matrices, and let

D= cσ ·
(
p −

e
c

A
)
, M0 =m0c2. (2.15)

Then we can express the Dirac Hamiltonian (2.13) in the form

HD =
(
Q + Q†

)
+ M0W =

√
2Q1 + M0W (2.16)

or

HD =

(
M0 D

D† −M0

)
. (2.17)

The operator D specified by (2.15) is not self-adjoint unless the vector potential A is real.
Evidently, in Witten’s sense, H = (HD −M0W )2 is the SUSY Hamiltonian of N = 1 with super-

charge Q1 = (HD − M0W )/
√

2. In the approach of Thaller7 and Beckers and Debergh,8 the Dirac
Hamiltonian itself is supersymmetric in the sense that it has the odd part Hodd

D =Q + Q† and the even
part Heven

D =M0W with respect to W, obeying {Hodd
D , W } = 0 and [Heven

D , W ]= 0. In the following
sections, we shall, however, treat the Dirac Hamiltonian (2.13) or (2.16) in the framework of SUSY
quantum mechanics of N = 2. To this end, we pay attention to the squared Dirac operator which turns
out to be (block) diagonal,

H2
D = {Q, Q†} + M2

0 =
*
,

DD† + M2
0 0

0 D†D + M2
0

+
-
. (2.18)

If H2
D is taken as the SUSY Hamiltonian, then its diagonal elements are SUSY partners.
Since DD† and D†D behave as ∼c2p2, we introduce a mass parameter m > 0 to make the squared

Dirac operator look like a Schrödinger Hamiltonian; namely,

HSUSY =
1

2mc2
H2

D =
*
,

H+
SUSY 0

0 H−SUSY

+
-
, (2.19)

where
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H+
SUSY =

1

2mc2

(
DD† + M2

0

)
, H−SUSY =

1

2mc2

(
D†D + M2

0

)
, (2.20)

acting on the subspaces H±, respectively. In other words, we choose a = 1/2mc2 and ε0 =M2
0/2mc2

in (2.10). The diagonal elements of the squared Dirac operator modified with the mass parameter
are indeed the Schrödinger Hamiltonians for a non-relativistic system of mass m in form. The mass
parameter m introduced above may be identified with the electron rest mass m0, but will be left
unspecified for a while to take note of its formal and arbitrary nature.

Now we can utilize these Schrödinger operators as SUSY partner Hamiltonians by regarding
HSUSY =H2

D/2mc2 as the SUSY Hamiltonian. Furthermore, use of the Schrödinger Hamiltonians
enables us to pursue the Feynman-type path integral representation for the Dirac systems as will be
discussed in Secs. III–VI.

It had been noted by Thaller,7 see also Refs. 8 and 9, that the Dirac operator can also be
diagonalized by a unitary Foldy-Wouthuysen transformation UFW. Let

UFW =
|HD | + WHD√

2H2
D + 2M0 |HD |

(2.21)

be a unitary operator, where

|HD | =

√
H2

D =

√
2mc2HSUSY (2.22)

is an even operator, [W, |HD|] = 0. It is easy to show that

HFW =UFWHDU†FW =W |HD | =
*..
,

√
DD† + M2

0 0

0 −

√
D†D + M2

0

+//
-
, (2.23)

which implies that the spectrum of HD can be obtained from the spectrum of HFW. To be a bit more
explicit, let us denote the upper and lower diagonal elements of HFW by H±FW. We may express them
via the SUSY Hamiltonians H±SUSY as follows:

H±FW =±

√
2mc2H±SUSY . (2.24)

Hence the spectrum of HD which is identical to that of HFW can in turn be obtained from that of
HSUSY . Although the transformed HFW is diagonal, it does not have the SUSY structure. The diagonal
elements in (2.23) do not form the SUSY partners. However, the eigenstates |Ψ±ε

〉
of H±SUSY are also

eigenstates of H±FW. Hence for ε > ε0 we have

H±FW |Ψ
±
ε

〉
=±

√
2mc2ε |Ψ±ε

〉
. (2.25)

In addition, in the case of unbroken SUSY, ε0 =M2
0/2mc2 belongs to the spectrum of either H+

SUSY
or H−SUSY or to both, and we have

|Ψ+
ε0

〉
∈H+⇒H+

FW |Ψ
+
ε0

〉
=M0 |Ψ

+
ε0

〉
,

|Ψ−ε0

〉
∈H−⇒H−FW |Ψ

−
ε0

〉
=−M0 |Ψ

−
ε0

〉
.

(2.26)

Hence the spectrum of HFW and therefore also of HD is symmetric about the origin with possible
exceptions at ±M0; cf. Ref. 10. The corresponding positive and negative energy eigenstates |Ψpos/neg

E

〉
of HD can explicitly be calculated from those of HFW by utilizing the unitary transformation (2.21).
That is,

|Ψ
pos
E

〉
=U†FW |Ψ

+
ε

〉
, HD |Ψ

pos
E

〉
=
√

2mc2ε |Ψ
pos
E

〉
,

|Ψ
neg
E

〉
=U†FW |Ψ

−
ε

〉
, HD |Ψ

neg
E

〉
=−
√

2mc2ε |Ψ
neg
E

〉
,

(2.27)
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and the Dirac eigenvalues E are given by those of the associated SUSY Hamiltonian, ε, via the simple
relation

E =±
√

2mc2ε. (2.28)

With the help of the SUSY transformation (2.12) the positive and negative energy eigenstates explicitly
read

|Ψ
pos
ε

〉
=

1√
2 + 2

√
ε0/ε

*.
,

(
1 +
√
ε0/ε

)
|Ψ+
ε

〉
√

1 − ε0/ε |Ψ
−
ε

〉 +/
-
, (2.29)

|Ψ
neg
ε

〉
=

1√
2 + 2

√
ε0/ε

*.
,

−
√

1 − ε0/ε |Ψ
+
ε

〉(
1 +
√
ε0/ε

)
|Ψ−ε

〉 +/
-
. (2.30)

In the case of unbroken SUSY when M0 ∈ spec(HD) the corresponding eigenstates are given by
|Ψ

pos
ε0

〉
= |Ψ+

ε0

〉
and in the case of �M0 ∈ spec(HD) they are by |Ψneg

ε0

〉
= |Ψ−ε0

〉
.

In closing this section let us summarize that the spectral properties of a supersymmetric
Dirac Hamiltonian (2.17) are explicitly given via those of the non-relativistic SUSY Hamiltonian
(2.19).

III. PATH INTEGRAL REPRESENTATION OF THE RESOLVENT

In non-relativistic quantum mechanics, the time-evolution operator can be represented in terms
of a Feynman path integral. In fact, the Schrödinger Hamiltonian being quadratic in the momentum
makes it possible to define the Feynman path integral properly.14,15 In the Dirac theory, the Hamil-
tonian is linear in the momentum. Hence the path integral representation cannot be constructed in a
manner analogous to that for the non-relativistic case. Especially, for the SUSY Dirac problem, it is
desirable to find an effective SUSY Hamiltonian quadratic in the momentum, corresponding to the
Dirac operator. To this end we shall employ the following procedure.

Let us start with the resolvent of the Dirac operator (2.16),

G(z)=
1

HD − z
, z ∈C\spec(HD), (3.1)

which is an analytical function of z in the complement of the spectrum of HD. Let us write it in the
form

G(z)= (HD + z)g(z2). (3.2)

Here

g(ζ)=
1

H2
D − ζ

(3.3)

is the resolvent of the squared Dirac operator H2
D, defined in the ζ-plane. The iterated resolvent g(ζ)

is easier to handle than the original resolvent G(z) is. While the Dirac operator HD given in (2.17)
is not diagonal, the squared operator H2

D is diagonal as shown in (2.18). Hence the iterated resolvent
g(ζ) can as well be given in the diagonal form

g(ζ)= *
,

g+(ζ) 0

0 g−(ζ)
+
-
, (3.4)

with

g+(ζ)=
1

DD† + M2
0 − ζ

, g−(ζ)=
1

D†D + M2
0 − ζ

. (3.5)

The resolvent G(z) of the Dirac operator HD may be obtained with the help of the diagonal elements
of the iterated resolvent, in the form
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G(z)= (HD + z)g(z2)= *
,

(z + M0)g+(z2) Dg−(z2)

D†g+(z2) (z −M0)g−(z2)
+
-
. (3.6)

The iterated resolvent g(ζ) as well as G(z) acts on Hilbert space H. Hence |Ψ′
〉
= g(ζ)|Ψ

〉
∈H

for |Ψ
〉
∈H, which yields on the coordinate base an integral equation,

〈r′′ |Ψ′〉=
∫
R3

dr′ 〈r′′ |g(ζ)|r′〉〈r′ |Ψ〉, (3.7)

whose kernel 〈r′′|g(ζ)|r′〉, denote by g(r′′, r′; ζ), will be referred to as the iterated resolvent
kernel.

Since H2
D in (3.3) and hence HSUSY defined by (2.19) are positive semi-definite, the spectrum of

the corresponding Schrödinger operator, spec(HSUSY ), is on the non-negative real axis of the ζ-plane.
Considering a contour C encircling counter-clockwise all points corresponding to spec(H2

D) and using
Cauchy’s integral formula, we can find

e−ituH2
D =−

1
2πi

∮
C

dζ e−ituζg(ζ), (3.8)

where t and u are any real constants. At this point, recall that the Schrödinger operator HSUSY is defined
by (2.19), we replace H2

D on the left-hand side by 2mc2HSUSY . Moreover, we let u= (2mc2~)−1. Then
the quantity on the left-hand side of (3.8) can be understood as the unitary evolution operator of the
system with the Schrödinger Hamiltonian HSUSY if t is identified with the time parameter. In the
coordinate representation, (3.8) may be written as

K(r′′, r′; t)=−
1

2πi

∮
C

dζ e−itζ/2mc2~g(r′′, r′; ζ), (3.9)

which relates the resolvent kernel to Feynman’s kernel (or the propagator)

K(r′′, r′; t)= 〈r′′ |e−itHSUSY /~ |r′〉. (3.10)

We also note that the iterated resolvent can be expressed as

g(ζ)= iu
∫ ∞

0
dt exp

{
−itu(H2

D − ζ)
}
. (3.11)

The integral on the right-hand side converges for Im(uζ) > 0 and ζ < spec(H2
D). Namely, it converges

on the upper half of the ζ plane if u > 0 or on the lower half plane if u < 0. With our choice
u= (2mc2~)−1, we consider the integral defined only for Im(ζ) > 0. In the coordinate representation,
(3.11) takes the form

g(r′′, r′; ζ)=
i

2mc2~

∫ ∞
0

dt Pζ (r′′, r′; t), (3.12)

where

Pζ (r′′, r′; t)= 〈r′′ | exp
{
−(it/~)

(
HSUSY − ζ/2mc2

)}
|r′〉, (3.13)

which we shall refer to as the promotor.16 The promotor for the Hamiltonian HSUSY is the same in
form as the propagator for the effective Hamiltonian Heff (ζ) = HSUSY � ζ /2mc2. As the propagator
is given in terms of Feynman’s path integral, so is the promotor. While the Schrödinger Hamiltonian
itself is self-adjoint, the effective Hamiltonian is not. However, the Hamiltonian has to be self-adjoint
for the time-evolution operator, but path integration of the promotor does not require self-adjointness
of the effective Hamiltonian.

The corresponding diagonal elements of the iterated resolvent kernel are given by

g±(r′′, r′; ζ)= 〈r′′ |g±(ζ)|r′〉=
i

2mc2~

∫ ∞
0

dt P±ζ (r′′, r′; t), (3.14)
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where

P±ζ (r′′, r′; t)= 〈r′′ | exp{−(it/~)H±eff (ζ)}|r′〉 (3.15)

and

H+
eff (ζ)=

1

2mc2

(
DD† + M2

0 − ζ
)
, H−eff (ζ)=

1

2mc2

(
D†D + M2

0 − ζ
)
. (3.16)

One of the merits of utilizing the iterated resolvent is that the kernel of its components can
be represented by means of Feynman’s path integral for effective non-relativistic systems. Let
L±ζ (ṙ, r, t) represent the classical Lagrangian associated with the effective Hamiltonian H±eff (ζ). Then
the promotors can be expressed as Feynman’s path integral

P±ζ (r′′, r′; t)=
∫ r(t)=r′′

r(0)=r′
Dr exp

{
i
~

∫ t

0
ds L±ζ (ṙ, r, s)

}
. (3.17)

If the system with the effective non-relativistic Lagrangian is path-integrable, the diagonal elements
of the iterated resolvent kernel can be determined via (3.14).

The resolvent kernel G(r′′, r′; z) = 〈r′′|G(z)|r′〉, or Green’s function, of the Dirac operator is
given as the coordinate representation of (3.6); namely,

G(r′′, r′; z)= *
,

(z + M0)g+(r′′, r′; z2) D(r′′)g−(r′′, r′; z2)

D†(r′′)g+(r′′, r′; z2) (z −M0)g−(r′′, r′; z2)
+
-
, (3.18)

where D(r′′) is the operator in the r′′ representation, satisfying 〈r′′|D|r′〉 = D(r′′)δ(r′′ � r′). If the two
non-zero elements of the iterated resolvent kernel are found in closed form, then all the elements of
Green’s function must be obtained in closed form.

In obtaining the above results, the SUSY-structure is a sufficient but not a necessary condition.
The recent approach is applicable even to the case where the Dirac operator is non-supersymmetric,
i.e., not of the form (2.17), insofar as its squared Dirac operator is (block) diagonal. A notable example
is the Dirac-Coulomb operator for the Dirac electron in the hydrogen atom problem, which is not in
the form (2.17) but whose square is diagonalizable. The path integral for the Dirac-Coulomb problem
has been explicitly and exactly calculated without SUSY.17

IV. THE FREE DIRAC HAMILTONIAN

The simplest example for the general approach discussed above is that of the free Dirac Hamil-
tonian for which D† = D = cσ · p and M0 = m0c2. Let m = m0 as this choice is physically most natural.
For simplicity, we use m for the electronic mass rather than m0 from now on.

First we treat this system by using the path integral representation. The effective Hamiltonian
is

H±eff (ζ)=
p2

2m
+

mc2

2
−

ζ

2mc2
=

p2

2m
−
µ2(ζ)
2m

, (4.1)

with

µ2(ζ)= ζ/c2 − m2c2. (4.2)

The effective Hamiltonian (4.1) is nothing more then that of the Schrödinger Hamiltonian for a free
non-relativistic particle of mass m with an additive constant acting onH± =L2(R3)⊗C2. The effective
Lagrangian corresponding to (4.1) reads

L±ζ (ṙ, r, t)=
m
2

ṙ2 +
µ2(ζ)
2m

. (4.3)

As is well known, the path integral for (4.3) can explicitly be calculated,14,15,18 whose result leads
the promotor (3.13) to the form
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P±ζ (r′′, r′; t)=
( m

2πi~t

)3/2
exp

{
i
~

( m
2t

(r′′ − r′)2 +
t

2m
µ2(ζ)

)}
. (4.4)

With the help of the integral formula No. 3.478.4 in Ref. 19, Re a > 0, Re b > 0,∫ ∞
0

dt t−3/2 exp{−a/t − bt} =

√
π

a
exp

{
−2
√

ab
}
, (4.5)

and assuming a small positive imaginary part of the mass, i.e., Im(m) > 0, we can deduce the resolvent
kernel for the squared Dirac Hamiltonian, x = r′′ � r′,

g±(r′′, r′; ζ)=
1

4π |x|(~c)2
exp{(i/~)µ(ζ)|x|}, (4.6)

from which follows via (3.2) the resolvent kernel for the free Dirac Hamiltonian

G(r′′, r′; z)=
e(i/~)µ(z2) |x |

4π |x|(~c)2

(
i~c

α · x
|x|2

+ cµ(z2)
α · x
|x|

+ βmc2 + z

)
. (4.7)

This is the well-known result [see, e.g., Eq. (1.263) in Ref. 10].
The spectral properties of the free Dirac Hamiltonian can directly be read off from those of the

free Schrödinger Hamiltonians

H±SUSY =
p2

2m
+

mc2

2
(4.8)

using the plane-wave solutions. With k ∈R3 denoting the wave vector, the spectrum reads

ε =
~2k2

2m
+

mc2

2
. (4.9)

The free Dirac spectrum E =±
√

m2c4 + c2~2k2 is immediately recovered via (2.28). The correspond-
ing positive and negative eigenstates are easily be obtained from the non-relativistic plane-wave
solutions via the general relations (2.29) and (2.30).

V. THE DIRAC OSCILLATOR

As a second less trivial example let us consider the so-called Dirac oscillator20–23 characterized by
D = cσ · (p + imωr) and M0 = mc2. With these definitions the corresponding Schrödinger Hamiltonians
(2.20) read

H±SUSY =
p2

2m
+

m
2
ω2r2 ∓

(
2ω
~

S · L +
3
2
~ω

)
+

mc2

2
, (5.1)

where
L= r × p, S= (~/2)σ (5.2)

denote the orbital and spin angular momentum operator, respectively. Introducing the spin-orbit
operator

K = 2S · L/~2 + 1= J2/~2 − L2/~2 + 1/4, J =L + S, (5.3)

which obviously commutes with H±SUSY , J2, J3, and L2, the above pair of Hamiltonians reads

H±SUSY =
p2

2m
+

m
2
ω2r2 ∓

(
K +

1
2

)
~ω +

mc2

2
. (5.4)

The ansatz
Ψ
±
njmjσ

(r)=R(σ)
nl (r)ϕ(σ)

jmj
(θ, φ), (5.5)

where ϕ(σ)
jmj

denotes the spin spherical harmonics24 (see also Appendix A), will reduce the eigenvalue
problem of (5.4) to that of the standard non-relativistic harmonic oscillator with an additional spin-
orbit coupling in three dimensions. The radial wave functions R(σ)

nl are identified with the well-
known radial wave function of the harmonic oscillator.25 The eigenvalues of (5.4) are explicitly given
by

E+
n,j,σ = ~ω

[
2n + j + 1 − σ(j + 1)

]
+ mc2/2,

E−n,j,σ = ~ω
[
2(n + 1) + j + σj

]
+ mc2/2,

(5.6)
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where n ∈N0 denotes the radial quantum number and the total angular momentum quantum number
j = 1

2 , 3
2 , . . . takes half odd integers andσ =±1. Hence, we have εn = E+

n,j,σ = E
−
n−1,j+1,−σ . As explicated

in Appendix A let us note that l, j, and σ are not independent quantum numbers as they are related
by j = l + σ/2. That is, for fixed j, we have the relation R(σ)

nl =R(−σ)
n,l−σ . For a detailed discussion of

the spectral properties, we refer to the work by Quesne;23 here we are only interested in the SUSY
ground states. Obviously we have ε0 = E+

0,j,1 =mc2/2. That is, SUSY is unbroken and the ground state
energy, which belongs to the spectrum of H+

SUSY only, is infinitely degenerate as it does not dependent
on the total angular quantum number j. Indeed, observing that

D† = cσ · (p − imωr)=−i~cσ · er

(
∂r +

mω
~

r −
K − 1

r

)
, (5.7)

where r = rer , one realizes that the radial part of the eigenfunctions Ψ+
0,j,mj ,1

with n = 0 and σ = 1,

R(+1)
0l (r)∝ rl exp

{
−

mω

2~2
r2

}
, l = j − 1/2,

are all annihilated by the operator (5.7).
Finally let us note that the SUSY transformations (2.12) explicitly read

D†Ψ+
n,j,mj ,1

= i
√

2mc2~ω2nΨ−n−1,j,mj ,−1,

D†Ψ+
n,j,mj ,−1 = −i

√
2mc2~ω2(n + j + 1)Ψ−n,j,mj ,1

,

DΨ−n,j,mj ,−1 = −i
√

2mc2~ω2(n + 1)Ψ+
n+1,j,mj ,1

,

DΨ−n,j,mj ,1
= i

√
2mc2~ω2(n + 1 + j)Ψ+

n,j,mj ,−1

(5.8)

and can be derived by explicit application of (5.7) using the property (A3) of Appendix A and
established recurrence relations of the radial functions of the harmonic oscillator.25

A. Path integral representation for the Dirac oscillator

The effective Hamiltonians associated with the Dirac oscillator explicitly read

H±eff (ζ)=
p2

2m
+

m
2
ω2r2 ∓

(
K +

1
2

)
~ω −

µ2(ζ)
2m

. (5.9)

Due to the spherical symmetry of the above Hamiltonian, the promotor associated with it can be
expressed in a partial wave expansion of the form

P±ζ (r′′, r′; t)=
∑
jσ

P±ζ ,l(r
′′, r ′; t)

j∑
mj=−j

ϕ(σ)
jmj

(θ ′′, φ′′)ϕ̄(σ)
jmj

(θ ′, φ′), (5.10)

where the radial promotor can be expressed in terms of a radial path integral

P±ζ ,l(r
′′, r ′; t)=

∫ r(t)=r′′

r(0)=r′
Dr exp

{
i
~

∫ t

0
ds L±eff (ṙ, r, t)

}
(5.11)

with effective radial Lagrangian, κ = σ(j + 1/2),

L±eff (ṙ, r, t)=
m
2

ṙ2 −
m
2
ω2r2 −

l(l + 1)~2

2mr2
+
µ2(ζ)
2m

± ~ω(κ + 1/2), (5.12)

which in essence is that of the radial harmonic oscillator in three-dimension and its path integration
has explicitly been calculated by Peak and Inomata26,27 resulting in

P±ζ ,`(r
′′, r ′; t)=

mω(r ′′r ′)1/2

i~ sinωt
exp

{
i mω
2~

(r ′′2 + r ′2) cotωt +
i tµ2

±(ζ)
2~m

}
I`+1/2

(
mωr ′r ′′

i~ sinωt

)
(5.13)
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with µ2
±(ζ)= µ2(ζ)±2m~ω(κ+1/2) and I`+1/2 denotes the modified Bessel function. The t-integration

can be performed using the integral formula (derived from 6.669.4 in Ref. 19)∫ ∞
0

dq
e2νq

sinh q
exp

{
−

1
2

(a + b)t coth q

}
I2ρ*

,

t
√

ab
sinh q

+
-
=
Γ(1/2 + µ − ν)

t
√

abΓ(1 + 2µ)
Wν,ρ(at)Mν,ρ(bt) (5.14)

with integrability conditions a > b, Re(1/2 + ρ � ν) > 0, and Re t > 0. The explicit integration
yields∫ ∞

0
dt P±ζ ,`(r

′′, r ′, t)=
(r ′′r ′)−1/2

iω
Γ(ρ − ν± + 1/2)
Γ(1 + 2ρ)

Wν±,ρ(r2
>mω/~)Mν±,ρ(r2

<mω/~), (5.15)

where ρ = `/2 + 1/4, ν±(ζ)= µ2
±(ζ)/4mω~, r> = max{r ′′, r ′}, r< = min{r ′′, r ′}, and Wρ,ν and Mρ,ν

are the Whittaker functions. We finally arrive at the iterated Green’s function for the Dirac oscillator

g±(r′′, r′; ζ)=
∑
jσ

g±` (r ′′, r ′; ζ)
j∑

mj=−j

ϕ(σ)
jmj

(θ ′′, φ′′)ϕ̄(σ)
jmj

(θ ′, φ′) (5.16)

with

g±` (r ′′, r ′; ζ)=
Γ(ρ − ν±(ζ) + 1/2)

2mc2~ω(r ′′r ′)1/2Γ(1 + 2ρ)
Wν±, ρ(r2

>mω/~)Mν± , ρ(r2
<mω/~), (5.17)

and ϕ̄ denoting the complex conjugated and transposed spinor of ϕ. From the poles of Green’s function
in the complex z-plane, we may deduce the spectrum. These poles occur in the Gamma function of
the numerator of the iterated radial Green’s function (5.17), that is, for

ν±n (ζ)= n + ρ + 1/2, n ∈N0. (5.18)

Hence the poles occur at

ζ± =m2c4 + 2mc2~ω
[
2n + j + 3

2 ±
1
2 ∓ σ

(
j + 1

2

)
− σ

2

]
(5.19)

and the spectrum of the Dirac oscillator explicitly reads

E+
n,j,σ =mc2

√
1 + 2~ω

mc2

[
2n + (j + 1) − σ(j + 1)

]
,

E−n,j,σ =−mc2
√

1 + 2~ω
mc2

[
2(n + 1) + j + σj

]
.

(5.20)

Obviously we have E−n−1,j+1,−σ =−E+
n,j,σ , which implies that the spectrum is symmetric about the

origin with the exception of the ground state energy E+
0,j,1 =mc2 which belongs only to the positive

part of the spectrum. Note that the spectrum can also be obtained directly from (5.6) using the
established relation (2.28).

VI. A GENERALISATION OF THE DIRAC OSCILLATOR

Let us now consider a generalisation of the Dirac oscillator characterised by

D= cσ · (p + i~∇U), M0 =mc2. (6.1)

Here the “superpotential” U is initially assumed to be an arbitrary function on R3. The corresponding
Schrödinger Hamiltonians now read

H±SUSY =
p2

2m
+
~2

2m

(
(∇U)2 ∓ ∆U

)
∓

2
m

S · (∇U × p). (6.2)

Obviously SUSY is unbroken if one of the functions

Ψ
±
0,λ(r)∝ exp{∓U(r)} χλ (6.3)

belongs to the Hilbert space H±, respectively. In the above, χλ is an arbitrary constant 2-spinor. Note
that both Ψ+

0,λ and Ψ−0,λ cannot be simultaneous ground states as, for example, a rapidly increasing
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superpotential U(r) → ∞ for r → ∞ will lead to an normalizable Ψ+
0,λ but then Ψ−0,λ is not square

integrable.
In order to be a bit more explicit, let us consider that the superpotential is a spherical symmetric

function. In that case,∇U = U ′(r)er and thus U ′ describes a so-called tensor potential.28 The quadratic
superpotential U(r) = (mω/2~)r2 gives rise to a linear tensor potential and characterises the previously
discussed Dirac oscillator. For a recent discussion on generalisation of the Dirac oscillator, see, for
example, Refs. 29 and 30. For a general spherical symmetric U, the corresponding Schrödinger
Hamiltonians take the form

H±SUSY =
p2

2m
+
~2

2m

(
U ′ 2(r) ∓ U ′′(r)

)
∓
~2U ′(r)

mr
K . (6.4)

The adjoint of the above Dirac operator (6.1) reduces to

D† =−i~cσ · er

(
∂r −

K − 1
r

+ U ′(r)

)
, (6.5)

and the condition for unbroken SUSY, that is, D†Ψ+
0,λ = 0 with Ψ+

0,λ =R(+1)
0l ϕ(+1)

jmj
, leads to a radial

wave function of the form
R(+1)

0l ∝ rl exp{−U(r)}, l = j − 1/2,

which becomes normalizable if the potential U is well behaved at the origin and increases rapidly
enough for large r. Note that for σ = �1 there exists no normalizable SUSY ground state. Let us also
mention that for a rapidly decreasing superpotential, U(r)→ �∞ as r →∞, SUSY is also unbroken
with ground state Ψ−0,λ =R(−1)

0l ϕ(−1)
jmj

belonging to the sector σ = �1 and

R(−1)
0l ∝ rl+1 exp{U(r)}, l = j + 1/2.

In either case, the SUSY ground state is infinitely degenerate as in the special case of the Dirac
oscillator.

A. The case of a linear superpotential

Let us consider a simple non-trivial case of a linear superpotential

U(r)= γr, γ > 0, (6.6)

which leads to the following pair of Schrödinger Hamiltonians:

H±SUSY =
p2

2m
+
~2

2m

(
γ2 ∓

2γ
r

K

)
. (6.7)

As the eigenvalues κ = σ(j + 1/2) of the spin-orbit operator K are non-zero integers, the above
Hamiltonian H+

SUSY characterizes a quantum particle under the influence of a Coulomb-like spin-
orbit interaction which is attractive for the positive eigenvalues of K where spin and orbital angular
momentum are aligned, σ = +1, and repulsive for the case σ = �1. The situation for H−SUSY is just the
opposite.

Let us first consider the subspace σ = +1 and make the following ansatz for the eigenvalue
problem:

H±SUSY R(+)
nl ϕ

(+)
jmj
= E±n,j,+1R(+)

nl ϕ
(+)
jmj

. (6.8)

As in this subspace the spin-orbit operator takes the positive eigenvalues ` + 1, this eigenvalue problem
is reduced to that of the standard non-relativistic Coulomb problem(

p2

2m
∓
~2γ(l + 1)

mr
+
~2γ2

2m

)
R(+)

nl ϕ
(+)
jmj
= E±n,j,+1R(+)

nl ϕ
(+)
jmj

(6.9)

with effective charge e2 = ~2γ(l + 1)/m. Hence the eigenvalue problem is immediately solved when
the R(σ)

nl are taken to be the radial eigenfunction for the Coulomb problem. With the well-known
eigenvalues of the non-relativistic Coulomb problem �(me4/2~2)(n + l + 1)�2, the discrete eigenvalues
are obtained,

E+
n,j,+1 =

~2γ2

2m
*
,
1 −

(
` + 1

n + ` + 1

)2
+
-
, n ∈N0. (6.10)
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The corresponding continuous spectrum of H+
SUSY coincides with the full spectrum of H−SUSY and may

be written as

E±k,+1 =
1

2m

(
~2k2 + ~2γ2

)
, k ∈R3. (6.11)

In a similar manner, one finds the discrete spectrum for the σ = �1 subspace, where l = j + 1/2
, 0,

E−n,j,−1 =
~2γ2

2m
*
,
1 −

(
`

n + 1 + `

)2
+
-
. (6.12)

Obviously we have recovered again the relation ε = E+
n,j,+1 = E

−
n+1,j,−1 as expected. This finally leads

to the discrete eigenvalues of the Dirac operator as follows:

E+
n,j,+1 =mc2

[
1 + ~

2γ2

m2c2

(
1 −

(
j+1/2

n+j+1/2

)2
)]1/2

, (6.13)

E−n,j,−1 =−mc2
[
1 + ~

2γ2

m2c2

(
1 −

(
j+1/2

n+j+3/2

)2
)]1/2

. (6.14)

The continuous spectrum is given by

E±k =±mc2
[
1 +
~2γ2

m2c2
+
~2k2

m2c2

]1/2

. (6.15)

In addition, the positive and negative Dirac eigenstates for the linear superpotential directly fol-
low from those of the non-relativistic Coulomb problem via the general relations established in
Sec. II.

Finally, let us note that a logarithmic superpotential of the form U(r) = γ ln(r/r0) also leads to
an exactly solvable SUSY Hamiltonian.

B. Path integral representation for the case of a linear superpotential

Similar to the previous discussion on the Dirac oscillator, the promotor can be expressed in terms
of partial waves [cf. Eqs. (5.10) and (3.17)] with effective radial Lagrangian

L±eff (ṙ, r)=
m
2

ṙ2 −
l(l + 1)~2

2mr2
−
~2

2m

(
γ2 ±

2γκ
r

)
+
µ2(ζ)
2m

. (6.16)

For the 1/r-potential, the path integral cannot directly be evaluated. However, with the help of the
so-called local space time transformation,16,31,32 it may be reduced to that of a harmonic potential.
To be more explicit, let us introduce a new radial variable s=

√
r and a new time τ with dt = 4s2dτ;

the integral expression (3.14) for the radial Green’s function (5.16) can be put into the form

g±` (r ′, r ′, ζ)=
i

2mc2~

∫ ∞
0

dtP±ζ`(r
′′, r ′, t)=

i
√

r′′r ′

mc2~

∫ ∞
0

dτP̃±ζ`(s
′′, s′, τ), (6.17)

where

P̃±ζ`(s
′′, s′, τ)=

∫ s′′=s(τ)

s′=s(0)
Ds exp

{
i
~

∫ τ

0
dτL̃±eff

}
(6.18)

now represents a path integral for a harmonic oscillator in the new space-time co-ordinates as the
new effective Lagrangian reads

L̃±eff =
m
2

(
d s
dτ

)2

−
Λ(Λ + 1)~2

2ms2
−

m
2
Ω

2s2 ±
4~2γκ

m
, (6.19)

where Λ = 2` + 1/2 and Ω= (2/m)
√
~2γ2 − µ2(ζ). Hence we immediately obtain the result

P̃±ζ ,`(s
′′, s′, τ)=

mΩ(s′′s′)1/2

i~ sinΩτ
IΛ+1/2

(
mΩs′s′′

i~ sinΩτ

)
exp

{
i mΩ

2~
(s′′2 + s′2) cotΩt ±

4i~γκ
m

τ

}
, (6.20)
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which obviously is identical in form with that of the Dirac oscillator discussed in Sec. V A. Hence
we can directly perform the τ-integration using formula (5.14) resulting in

g±` (r ′′, r ′, ζ)=
(r ′′r ′)1/4

mc2~Ω

Γ(ρ − ν± + 1/2)
Γ(1 + 2ρ)

Wν±,ρ(r>mΩ/~)Mν±,ρ(r<mΩ/~), (6.21)

where ρ =Λ/2 + 1/4 = ` + 1/2 and ν± = ±2~γκ/Ωm. Again the poles of g±` will lead to the eigenvalues
of the associated Dirac Hamiltonian and occur at the poles of the Gamma function in the numerator,
that is, at ν± = n + ` + 1 with n ∈N0. For the positive energy sector, they can only occur for positive
κ = ` + 1, that is, σ = 1, and with ν+ = 2~γ(` + 1)/Ωm the final result reads

E+
n,`,1 =

√√
m2c4 + ~2c2γ2*

,
1 −

(
` + 1

n + ` + 1

)2
+
-
. (6.22)

For the negative energy sector, the occurrence of poles requires that κ = �` < 0, σ = �1 and leads
to

E−n,`,−1 =−

√√
m2c4 + ~2c2γ2*

,
1 −

(
`

n + ` + 1

)2
+
-
. (6.23)

Finally let us note that Green’s function also leads to the continuous spectrum of the system. In
fact, the branch cut occurring in the definition of Ω when taken along the negative half line can be
parameterized by ~2γ2

� µ2(ζ) = �λ2 with λ ∈R+ and directly leads to

E±k =±
√

m2c4 + ~2γ2c2 + ~2k2c2, (6.24)

where we have identified λ = ~|k|. These eigenvalues are indeed identical to those given in (6.13)–
(6.15) by noting the relation j = l + σ/2.

It is worth remarking that a logarithmic superpotential of the form U(r) = γ ln(r/r0) as mentioned
above the path integration can be done in closed form, too.

VII. CONCLUSIONS

In this paper, we have studied the resolvent kernel, or Green’s function, of supersymmetric Dirac
Hamiltonians. It has been shown that the iterated resolvent g of the squared Dirac Hamiltonian allows
for an explicit path-integral representation of Feynman’s type. This is due to the fact that squared Dirac
Hamiltonian becomes block diagonal and each block is represented by an effective Hamiltonian which
is of the form of a non-relativistic Schrödinger Hamiltonian. The final resolvent kernel G is then sim-
ply obtained by differentiation; cf. Eq. (3.18). We have explicitly treated the free particle case leading
to a path integral of the non-relativistic free particle; the Dirac oscillator whose path integral represen-
tation was that of a non-relativistic harmonic oscillator with an additional spin-orbit coupling; and a
generalisation of the Dirac oscillator where we have studied the special case of a linear superpotential
leading us to a non-relativistic path integral of the Coulomb type, which can explicitly be calculated.
The path integral representation may also be useful in obtaining semi-classical approximations of
a supersymmetric Dirac Hamiltonian, for example, in cases were the path integral is not exactly
solvable.

We have also shown in this paper that once the spectral properties, i.e., the eigenvalues and
eigenfunctions, of the associated non-relativistic SUSY partner Hamiltonians H±SUSY are explicitly
known, the spectral properties of the Dirac Hamiltonian immediately follow. The eigenvalues E of
the Dirac Hamiltonian are explicitly given in terms of the eigenvalues ε of the non-relativistic H±SUSY
via the simple relation (2.28). The corresponding eigenstates are given by those of H±SUSY via the
relation (2.29) and (2.30).

In the main text, we have only considered systems with unbroken SUSY. However, the general
approach is valid for good and broken SUSY. In Appendix B, we briefly realise the free Dirac
Hamiltonian in the so-called supersymmetric representation of the Dirac matrices leading to a broken
SUSY as discussed in the general approach. The resulting partner Hamiltonians (B4) are identical to
those of the unbroken realisation (4.8) discussed in the main text.
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Our examples were all based on a Dirac Hamiltonian in three dimensions but the discussion of
Secs. II and III is also applicable to Dirac Hamiltonians in one dimension and two dimensions in an
obvious way. Appendix C briefly discusses the one-dimensional Dirac oscillator and its generalization,
the relativistic Witten model. Further examples of supersymmetric Dirac Hamiltonians are briefly
discussed in the textbook by Thaller.10 In particular the Dirac particle in an external magnetic field,
cf. Eq. (2.13), exhibits SUSY and its corresponding partner Hamiltonians are given by the usual
Pauli-Hamiltonian. Hence, whenever that Pauli problem is solvable, as, for example, for a constant
magnetic field, the corresponding Dirac problem is also solved.

Finally let us mention that our approach also applies to radial Dirac Hamiltonians in flat space
as well as in central back grounds like de Sitter and anti-de Sitter space.33 It might also be applied
to cases were no exact SUSY structure and Foldy-Wouthuysen transformation exist using proper
non-relativistic approximations as recently discussed by Jentschura and Noble.34

APPENDIX A: SPIN SPHERICAL HARMONICS

In this appendix, we briefly review the basic properties of the spin spherical harmonics following
Bjorken and Drell24 (see also the textbook by Thaller10),

ϕ(σ)
jmj

(θ, φ)=
*..
,

√
l+1/2+σmj

2l+1 Y
mj−1/2
l (θ, φ)

σ

√
l+1/2−σmj

2l+1 Y
mj+1/2
l (θ, φ)

+//
-
, (A1)

where Yml
l denotes the usual spherical harmonics defined on the unit sphere S2. In the above definition,

the total and orbital angular momentum quantum numbers j and l are not independent and obey the
relation j = l + σ/2, where σ = ±1. Note that l ∈N0 and l = 0 is only allowed for the case σ = +1.
The ϕ(σ)

jmj
are simultaneous eigenfunctions of J2, J3, L2, and the spin orbit operator K,

J2ϕ(σ)
jmj
= j(j + 1)~2ϕ(σ)

jmj
, j ∈ { 1

2 , 3
2 , 5

2 . . .},

J3ϕ
(σ)
jmj
= mj~ϕ

(σ)
jmj

, −j ≤mj ≤ j,

L2ϕ(σ)
jmj
= l(l + 1)~2ϕ(σ)

jmj
, j = l + σ/2,

Kϕ(σ)
jmj
= κϕ(σ)

jmj
, κ =σ(j + 1/2).

(A2)

They form a complete orthogonal set on the Hilbert space L2(S2) ⊗ C2 and thus are most suitable
for solving eigenvalue problems of spherical symmetric Hamiltonians like H±SUSY as discussed in the
main text. Finally let us mention that they obey the relation24

σ · erϕ
(σ)
jmj
= ϕ(−σ)

jmj
. (A3)

Also note that in the literature the eigenvalues of the spin-orbit operator are sometimes denoted by
�κ and the operator is multiplied by ~2. For simplicity, we prefer a dimensionless K with eigenvalues
denoted by κ. Finally let us mention the obvious relation

σ · p=−i~(σ · er)

(
∂r −

K − 1
r

)
, (A4)

which was used several times in the main text.

APPENDIX B: FREE DIRAC HAMILTONIAN WITH BROKEN SUSY

Despite the fact that in the main text we only considered systems with unbroken SUSY, the
general approach is clearly valid for unbroken and broken SUSY. As a simple but instructive example
with broken SUSY, let us consider again the free Dirac Hamiltonian

HD = cα · p − βmc2. (B1)



052301-15 G. Junker and A. Inomata J. Math. Phys. 59, 052301 (2018)

Using the so-called supersymmetric representation of the Dirac matrices10

αs = *
,

0 σ

σ 0
+
-
, βs = *

,

0 −i

i 0
+
-
, (B2)

the free Dirac Hamiltonian takes the explicit form

HD = *
,

0 cσ · p − imc2

cσ · p + imc2 0
+
-
. (B3)

Hence it is a supersymmetric Dirac operator with D = cσ · p � imc2 and M0 = 0. In contrast to the
discussion in Sec. III, here, the supercharge is not self-adjoint but leads to the same SUSY partner
Hamiltonians

H±SUSY =
1

2mc2

(
c2p2 + m2c4

)
. (B4)

However, here ε0 =M2
0/2mc2 = 0 and hence cannot belong to the spectrum of above SUSY Hamil-

tonians, that is, SUSY is broken for this choice of supercharge. Nevertheless, H±SUSY share the
same plan-wave eigenstates as in the unbroken SUSY case with the same eigenvalues given by
(4.9).

APPENDIX C: ONE-DIMENSIONAL DIRAC OPERATORS

The free Dirac operator in one dimension is represented by 2 × 2 Pauli matrices and explicitly
reads

HD = cσ1p + σ3mc2 =

(
mc2 cp
cp −mc2

)
(C1)

acting on H=L2(R) ⊗ C2. As in the three-dimensional case, we may define a generalized Dirac
oscillator via the non-minimal substitution p→ p � i~U ′(x)σ3, where U :R 7→R denotes the super-
potential, giving rise to the standard non-relativistic SUSY Hamiltonians of the Witten model shifted
by ε0 = mc2/2,

H±SUSY =
p2

2m
+
~2

2m

(
U ′ 2(x) ∓ U ′′(x)

)
+

mc2

2
. (C2)

Hence, whenever the eigenvalue problem of such a non-relativistic SUSY Hamiltonian can be solved,
one immediately has the solution for the Dirac problem. Indeed, let εn = εn � mc2/2 denote the
eigenvalues of the unshifted Witten model H±SUSY − ε0; we immediately have the Dirac spectrum

E±n =±mc2

√
1 +

2εn

mc2
. (C3)

The corresponding eigenstates are found similarly via relation (2.27). In the non-relativistic limit, we
recover the spectrum of the Witten model,

lim
c→∞

(
E+

n − mc2
)
= εn, (C4)

confirming that the one-dimensional Dirac operator

HD =

(
mc2 c(p + i~U ′(x))

c(p − i~U ′(x)) −mc2

)
(C5)

is indeed the relativistic version of Witten’s non-relativistic SUSY model characterised by the SUSY
partner Hamiltonians (C2).

The special case U(x)= mω
2~ x2 leads to the one-dimensional Dirac oscillator Hamiltonian

HD =

(
mc2 c(p + imωx)

c(p − imωx) −mc2

)
, (C6)

which obviously is a supersymmetric Dirac Operator with D = c(p + imωx), M0 = mc2, and the SUSY
Hamiltonians read

H±SUSY =
p2

2m
+

m
2
ω2x2 ∓

~ω

2
+

mc2

2
, (C7)
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coinciding, except of the trivial additive constant mc2/2, with the supersymmetric harmonic oscil-
lator in Witten’s non-relativistic model.3 Here SUSY is unbroken as the ground state energy
ε0 =M2

0/2mc2 =mc2/2 and belongs to the spectrum of H+
SUSY . The positive eigenvalues are εn = ~ωn +

ε0, n = 1, 2, 3, . . ., and the corresponding eigenstates are given byΨ+
n (x)= 〈x |n〉 andΨ−n (x)= 〈x |n−1〉,

where |n〉 represents the standard nth eigenstate of the one-dimensional harmonic oscillator. Finally,
the complete spectrum of the one-dimensional Dirac oscillator reads

E+
0 =mc2, E±n =±mc2

√
1 + 2n

~ω

mc2
, n ∈N. (C8)

Let us note that the positive part of this spectrum coincides with that of the three-dimensional Dirac
operator when σ = 1 and the negative part coincides with the negative part of the three-dimensional
case if σ = �1 is chosen. For a detailed study of the dynamical behavior for this model, we refer
to Ref. 35, which compares the dynamics generated by the above HD with that generated by the
corresponding diagonalized Hamiltonian HFW.
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